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Abstract--Experiments are performed to determine if a stable state of uniform fluidization exists for the 
case of fluidization of small particles by liquids. Such stable states are theoretically possible if the fluidized 
mixture has a sufficiently large effective elasticity, and stabilization is expected to be more pronounced 
as the particle size is decreased. Experiments were conducted for a wide range of variables by 
independently varying particle size, particle density and fluid properties. Careful measurements of the 
presence or absence of instabilities were made through a combination of flow visualizations and 
quantitative measurements. We observed stable uniform fluidization over a range of fluid velocities 
between that required for minimum fluidization, Umr, and that corresponding to the onset of instability 
waves, uc. We interpret these experimental results in terms of the recent theory of Batchelor, in which 
the elasticity is identified with two distinct mechanisms--gradient dispersion and Reynolds stresses due 
to particle velocity fluctuations. The observed strong dependence of the effective elasticity on the ratio 
of particle Reynolds number to the fluid/solid density ratio gives support to the conclusion that the main 
contribution to the elasticity is inertial in origin, and is due to the Reynolds stress due to particle velocity 
fluctuations. 
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1. I N T R O D U C T I O N  

As the flow of  fluid upward through an assemblage of  particles is increased, the drag force on the 
particles increases until it is sufficient to balance their buoyant  weight. The particles then become 
free to move and the assemblage, or bed, is said to be fluidized. Below minimum fluidization con- 
ditions, the packed bed supports the weight of  the particles through contact stresses and the volume 
fraction of fluid, or void fraction, within the assemblage is nearly independent of  flow rate. Above 
minimum fluidization, the bed maintains the balance between drag and gravity forces by expanding 
to accommodate  the increased flow. In the freely moving state the mixture of  fluid and particles 
displays many  of the characteristics of  an effective fluid, e.g. the free surface of  the bed remains 
horizontal when the containing vessel is tilted and less-dense objects can be floated in the bed. 

Fluidized beds have excellent heat and mass transfer characteristics, which, along with the fact 
that the fluid-solid mixture can be easily transported in and out of  the containing vessel, have led 
to the use of  fluidization in many large-scale processes, such as fluidized catalytic cracking and 
fluidized coal combustion. Understanding and predicting the behavior of  fluidized bed processes 
is often limited by our understanding of  the underlying mechanics of  the fluid-solid mixture. For  
example, instabilities manifest themselves in gas-fluidized beds as "bubbles,"  i.e. regions in which 
the fluid is nearly devoid of particles. Bubbles reduce the contact between fluid and particles, 
limiting the efficiency of the heat and mass transfer. Understanding the origin of  these instabilities 
is an important  step in our understanding of  fluidized bed mechanics. A comprehensive overview 
of the science and practice of  fluidization can be found in Davidson et al. (1985). 

To satisfy the need for a fundamental understanding of the mechanics underlying the motion 
of  the two phases, a number of  attempts have been made to develop a suitable mathematical theory 
of  fluidization, and of dispersed two-phase flows in general. Two promising approaches to the 
problem are: (1) to view the solid and fluid phases as interpenetrating continua (hereafter referred 
to as the continuum approach); and (2) to consider the motion of  individual particles in a mean 
sense (hereafter referred to as the discrete approach). Each of these approaches has advantages and 
disadvantages and result in final governing equations which are quite similar, a fact which may 
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allow the two theories to complement each other. Brief descriptions of the continuum and discrete 
approaches follow; a more complete comparison can be found in Ham (1988). 

The continuum approach has at its foundation the assumption that unambiguous local mean 
properties for each phase can be defined by averaging point properties over a length scale which 
is large compared to the size of an individual particle in the solid phase, yet small compared to 
the size of the system. Such an assumption is plausible in concentrated systems such as fluidized 
beds at or near minimum fluidization. Presuming that local mean properties can be defined, 
conservation laws governing point quantities, such as mass and momentum, can be averaged to 
yield continuum balance equations for each phase. Derivation of these continuum equations is 
discussed by Anderson & Jackson (1967), Drew & Segel (1971a), Homsy et al. (1980) and Jackson 
(1985), among others. The resulting set of continuum equations can be closed only by making 
additional, constitutive assumptions for the inter- and intraphase forces. Determining the 
appropriate form for these constitutive equations is the major obstacle in the development of a 
complete, satisfactory continuum model. Difficulties arise in answering two main questions: 

(1) What are the important microscale mechanisms? 
(2) How can the effects of the mechanisms be reflected in a continuum framework? 

The discrete particle approach need not address the problem of insuring that the microscale is 
adequately represented in the continuum framework. Instead, governing equations arise directly 
from ensemble averaging of the equations describing the motion of individual particles in a 
dispersion. Batchelor (1988) has systematically applied this approach to fluidization and, equiva- 
lently, sedimentation. To avoid making untestable hypotheses in the course of developing 
governing equations, Batchelor restricts his analysis to one-dimensional, unsteady flow. One- 
dimensional flow, which implies statistical homogeneity on any horizontal plane, allows an 
equivalence to be made between ensemble means and spatial averages over a horizontal plane. 
Batchelor proceeds by examining the conservation of particle number and particle momentum in 
a cylindrical control volume with its axis perpendicular to the uniform horizontal planes. He argues 
for the existence and nature of various contributions to the momentum balance: flux across 
boundaries, body forces and interactions of particles within the control volume with other particles 
and with the fluid. The resulting equations differ from the continuum equations only in their explicit 
accounting for a net force resulting from hydrodynamic dispersion. 

A rigorous discrete approach has the appeal of having no hypotheses which cannot be tested 
on their own merits, but the current one-dimensional formulation will have limited utility. The 
one-dimensional theory can be used to investigate nearly homogeneous fluidized beds, but when 
excursions from homogeneity are large, non-linear effects cause the flow to become two- or 
three-dimensional, as seen, for example, in the experiments of E1-Kaissy & Homsy (1976) and 
Didwania & Homsy (1981). In order to describe fluidized beds under these conditions, more 
complete descriptions, allowing three-dimensional motions, are needed. The continuum description 
can, however, benefit from the existence of the one-dimensional theory, which can provide guidance 
on the appropriate form for the constitutive models used to close the continuum equations of 
motion. 

The ultimate test of any theory is its ability to describe real systems. The first test is whether 
a theory admits the correct base-state solution. The commonly-accepted uniform-fluidization base 
state satisfies the governing equations of both the continuum and discrete approaches. A possible 
second test is agreement between predictions of linear stability theory and experimental measure- 
ments. Linear stability theory applied to both the continuum equations (Anderson & Jackson 1968; 
Drew & Segei 1971b; Homsy et al. 1980 etc.) and the ensemble-average equations (Batchelor 1988) 
predict that fluidized beds can exhibit growing modes, i.e. they can support, in the form of 
one-dimensional wave trains, exponential growth of small perturbations to the void fraction, Co, 
in a uniform bed. The instability in a fluidized bed requires only the existence of kinematic waves 
and particle inertia, and results from the phase lag between disturbances in the mean particle 
velocity and the voidage. However, the uniform base state is not necessarily unconditionally 
unstable; the bed can be stabilized by what may be considered a bulk elasticity which arises in both 
approaches. The two approaches differ, however, in the proposed origin, and consequently the 
expected magnitude, of the bulk elasticity. The continuum description, in its generally accepted 
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form, has bulk elasticity resulting from direct particle-particle interactions and velocity fluctua- 
tions. In the earlier interpretation, this bulk elasticity was not found to be sufficient to prevent 
instability, and thus fluidized beds were predicted to be unstable at minimum fluidization 
conditions. The discrete description, on the other hand, has two contributions to the bulk elasticity; 
one resulting from velocity fluctuations and the other from hydrodynamic dispersion. The 
magnitude of hydrodynamic dispersion in fluidized beds cannot yet be estimated with any certainty, 
but considering that O(1) dispersion coefficients have been observed in the sedimentation of dilute 
and semi-dilute suspensions (Davis & Hassen 1988; Ham & Homsy 1988), Batchelor considered 
that this contribution to the bulk elasticity may be sufficient to prevent instability. In this context, 
we should also mention the approach of Foscolo & Gibilaro (1984), who consider the elasticity 
as arising from an interaction force proportional to the gradient in the volume fraction of particles. 
Thus, there is predicted to be a gap between minimum fluidization and the onset of an instability. 
when the total contribution to the elasticity of the bed exceeds a certain critical magnitude. 

The continuum and discrete descriptions give similar linearized equations for the perturbation 
void fraction E that we can put in the form of Liu (1982) as 

AE, + BExt + (C - Z)(,x - E(Exx., + Exxt) + FE, + G(, = 0. [1] 

This resulting linearized equation has been made dimensionless with a characteristic length d, the 
diameter of  the particles, and a characteristic time d/uo, Uo being the velocity at the uniform base 
state. As is well-known, the coefficients A, B etc. are related to the detailed form of the equations 
and to the expressions used for virtual mass, drag force etc. A detailed discussion is not in order 
here; rather, we focus our attention on the elastic term -ZExx which exists in both descriptions 
although considered to be of different origins, and to give the criterion for the stability of the 
fluidized bed. 

Equation [I] admits planar wave solutions of the form 

e = E' exp[ i k (x  - ct)], [2] 

where k is real and c is complex. Solutions in which c~, the imaginary part of c, is positive represent 
growing disturbances. The uniform base state will therefore only be stable with ci ~< 0, Vk. 
Substitution of [2] into [1] and requiring that ci ~< 0, VK, yields the following criterion for stability: 

A - ½ B  

Nm~A(Z__C) 1 5 < 1 .  [31 +~B 
We can also express this stability criterion in another way and following Liu (1982), we now re- 

cast this equation into a form interpretable in terms of wave hierarchies (see Whitham 1974, Chap. 10): 
0 ~ 03E'~ 

a, + ve z ~-~--~-ix 2 + ~x3 ). [4] 

The waves of different order are clearly displayed by the factored operators. The lower order 
wave is the familiar kinematic wave found in a sedimenting suspension. The higher order waves 
are elastic waves. The r.h.s, of the equation is simply a viscous damping term. Stability requires 
the lower order wave speed, a~ = G/F,  to lie between the two higher order wave speeds, c~ and c2, 

c,.2=~--~ 1 4- 1 -t if2 ] j ,  [5] 

that is to say, c2 < a~ < c~ for stability. The relation between wave speeds and stability is clearer 
when virtual mass effects associated with the coefficients B and C can be ignored. In this simple 
case the criterion for stability becomes that the kinematic wave speed, a~, must be less than an 
elastic wave speed defined by ( Z / A )  ~/2. Clearly, the underlying source of stability is the term 
associated with the coefficient Z, which can be considered a measure of the elasticity of the bed. 
The qualitative nature of this result is presented in figure I, which indicates that stability occurs 
when Z exceeds some critical value. We also note for future reference that the bed is predicted to 
first become unstable to long waves, which in an experiment would manifest themselves at very 
low temporal frequencies. 
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Figure  1. Influence of  the elasticity on fluidized bed stability. 

The contributions to Z may be considered to be made up of two parts; one arising from the mean 
square velocity fluctuations in a homogeneous bed and the other due to hydrodynamic dispersion 
down a concentration gradient: 

Z Ko ~0( l -R) /50 
= u--~ + Fro [6] 

Here the subscript 0 implies evaluation at base-state conditions. Ko/u 2 is a Reynolds stress 
associated with particle fluctuations and ~0 is the mobility. The other quantities appearing are the 
density ratio, 

R Pf = --, [71 
P~ 

the Froude number, 

and 

,4 
Fro = t8] 

/50 = ~uo' [91 

where/50 is the dimensionless hydrodynamic (gradient) diffusivity of the particles using a scaling 
appropriate to Stokes flow (see Davis & Hassen 1988; Ham & Homsy 1988). 

We can also define a total dimensionless effective elasticity of the particles as 

Q = K0 k/5o. [101 
g(1 -- R)dyo 

The criterion of stability can be written as 

Fr 
Q > {a, ((a, A - B) + C)}. [11] 

yo( l  - R )  

Once expressions are adopted for the various terms, virtual mass coefficient, drag coefficient etc., 
[11] at the threshold of the instability can be used to determine the magnitude of Q for a given 
system. We give the details of the explicit working equation we used in the appendix. We emphasize 
that in experiments, we are unable to discriminate between the two contributions to Q and we 
therefore measure the total effective elasticity. Only a comparison between the available theories 
and the observed dependence of Q on the parameters will give information about the relative 
importance of these terms. 

Two careful comparisons between linear stability theory and experimental observations can be 
found in the literature, those of Anderson & Jackson (1969) and Homsy et al. (1980). These studies 
found general agreement of observations in a liquid-fluidized bed with the predictions of linear 
stability theory applied to the continuum equations, i.e. the experimentally observed mode for the 
instability was a one-dimensional axial wave as predicted. These waves apparently appeared at 
minimum fluidizing conditions. Furthermore, waves were verified to grow exponentially in space. 
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Homsy et al. (1980) also inferred material constants, which are part of the constitutive relations 
in the continuum description, from measurements of growth rates, phase speeds and wavenumbers, 
and found them to be "internally consistent and of reasonable magnitude". These studies support 
the validity of the continuum description, but other experiments call into question its completeness. 

Didwania & Homsy (1981) were interested in characterizing the transition, observed by E1-Kaissy 
& Homsy (1976), from linear instability waves to a non-linear, bubbling regime. In the course of 
their experiments, Didwania & Homsy found a region near minimum fluidization in beds of 
0.029 cm glass beads, fluidized with water, in which no instabilities could be detected. Waves were 
always observed at flow rates just above minimum fluidization for larger particles, and no 
experiments were performed with particles smaller than these. Didwania & Homsy could not say 
definitively that a stable liquid-fluidized bed had been observed, since the sensitivity of their 
detection system was restricted in the experiments with small particles. This was, however, a 
suggestion that some additional damping mechanism, or additional contribution to the bulk 
elasticity, may be required for a complete description of fluidization. 

We have therefore set as our objectives in this work: (1) to carefully and conclusively determine 
if stable, uniform fluidization at velocities above minimum fluidization can be attained; (2) to 
characterize the stable regime; and (3) to compare the experimentally determined characteristics 
to those predicted by linear stability theory. In section 2, the experimental techniques are described. 
In section 3, the experimental results are presented. In the first paragraph of this section, we give 
experimental evidence of a stable region between minimum fluidization and the onset of the planar 
wave instability. In the second, we deduce from the stability criterion given by Batchelor the total 
effective elasticity and study its variation with the experimental parameters. Finally, in section 4, 
the results are discussed and conclusions drawn. 

2. EXPERIMENTAL TECHNIQUES AND PROCEDURES 

To develop an effective experimental program, we turned for guidance to the experiments of 
Didwania & Homsy (1981) and the results of linear stability theory, which indicate that, for fixed 
particle and fluid properties, stability should improve with decreasing particle size. Therefore, our 
experimental program was as follows. First, we sought to establish the existence or non-existence 
of a region of stable fluidization characterized by the absence of instability waves at a velocity 
u > Umf (the subscript mf indicates at minimum fluidization) and void fraction E > emr. This was 
done in a set of preliminary experiments that we will not report here. Second, we sought to measure 
the gap between (Umf , Emf ) and the critical conditions for the onset of instability waves, (u¢, E¢). 
Finally, we carried out an extensive set of experiments to study the parametric dependence of these 
quantities on particle size, d, particle density, pp, and fluid viscosity, #. 

2.1. Particle and fluid characteristics 

Experiments were done in three separate series in which d, pp and # were all varied independently. 
We chose first to fluidize glass beads of fixed density with water, selecting a range of particle sizes 
which overlapped and ran below that used by Didwania & Homsy (1981). Characteristics of the 
particles are presented in table 1. Each set was sieved to guarantee that the particles were within 
adjacent screen sizes, then the set was cleaned with a 33% (vol) HNO3, 5% HF, 1% Ivory soap 
solution to remove any surface film. In a second set of experiments, we increased the viscosity # 
of the fluid for a given size of particle chosen in the middle of the range (set C), thus determining 
the dependence of the critical conditions, (u¢, Ec) on/~. In order to vary the viscosity easily, we used 
a mixture of glycerine and water. Characteristics of the different fluids used are displayed in table 
2, and as can be seen, the kinematic viscosity was varied by almost one order of magnitude. Finally, 
a third set of experiments were performed with different particle densities, for particles in the size 
range of the first series of experiments, as indicated in table 1. 

2.2. Apparatus 

A schematic of the apparatus is shown in figure 2. The fluidized bed itself was a cylindrical glass 
tube of 0.782 + 0.001 cm i.d. (a bed of 0.779 cm i.d. was used for some of the runs for sets A and 
B). We constrained our ratios of bed diameter to particle diameter, Db/d, to fall within a range 
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Table 1. Particle characteristics 

Set d(cm) Ps (g/cm3) 

A 0.0655 + 0.0055 2.42 + 0.007 Table 2. Fluid characteristics 
B 0.0460 + 0.0040 2.47 _ 0.002 Fluid v(cS) A(%, by wt of glycerol) pf(g/cm 3) 
C 0.0325 + 0.0028 2.49 + 0.002 
D 0.0230 _+ 0.0020 2.47 + 0.001 1 1.00 0.00 1.0000 
E 0.0165 + 0.0015 2.47 _ 0.001 2 1.68 18,30 1.0410 
F 0.0325 _+ 0.0028 4.14 + 0.01 3 2.45 31.96 1.0773 
G 0.0285 + 0.0035 1.19 _ 0.01 4 4.03 43.80 1,1080 
H 0.0655 _+ 0.0025 1.19 + 0.01 5 8.50 60.02 1.1460 

for which wall effects could be neglected while maintaining resolution of the measurement 
technique, i.e. we worked in the range 10 < Db/d < 50. The tube was inspected to insure that its 
cross section was round and constant along its length. During operation, the tube was securely 
clamped in position on a rigid support structure, keeping it both straight and vertical. 

The flow was distributed uniformly at the bottom of the bed with a special distributor assembly. 
The distributor assembly consisted of a section of tube filled with 0.0325 cm glass beads, supported 
at the bottom by a fine mesh screen and packed down at the top by a porous stainless-steel plate. 
The pores in the plate were small enough to insure a large pressure drop and uniform distribution 
even at the lowest flow rate used in our experiments. A 1/2" Swaglock tubing connector at the top 
of the assembly allowed the porous plate to be sealed between two rubber O-rings and clamped 
tightly to the bottom of the fluidized bed tube. 
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Figure 2. Schematic of  the fluidized bed apparatus. 
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Fluid was circulated through the bed by a piston metering pump (Fluid Metering Inc. model 
RP-D, 1725 strokes/min), allowing an easy and precise means of flow control. The pump and bed 
were part of a closed flow loop, containing two different types of flexible tubing: stiff, 1/4" Teflon 
tubing and soft, 1/2" Tygon tubing. The soft tubing connected the pump to the flow loop in order 
to isolate the fluidized bed from pump vibrations. The soft tubing also collected the overflow and 
carried it to the reservoir, providing an easy means of diverting the entire overflow into a beaker 
for gravimetric flow measurement. An in-line filter was placed downstream of the pump to prevent 
pluggage of the porous plate and a rotameter was included to provide nominal flow rates to aid 
flow control. 

2.3. Optics 

The method for detecting instability waves found to be the most appropriate was the light 
extinction technique originated by Anderson & Jackson (1969), modified by E1-Kaissy & Homsy 
(1976) and used by Didwania & Homsy (1981). The basic principle behind the technique is that. 
the amount of light attenuation by particles in a suspension will be a function of the particle 
concentration. Fluctuations in the intensity of light transmitted through a fluidized bed can 
therefore be correlated with fluctuations in the local void fraction. Careful calibration is required 
to determine the quantitative relation between the magnitude of the intensity and voidage 
fluctuations, but such calibration was not required for an experiment designed only to detect the 
onset of coherent fluctuations. 

The light-source/detector combination was mounted on an optical rail to keep it accurately 
aligned and level. The optical rail was attached to the support structure for the fluidized bed and 
could be moved vertically to position the light at distances above the porous plate ranging from 
12 to 120cm. 

Our light source was a 5 mW He-Ne laser (Spectra Physics model 105-2). Our technique did not 
require the coherence of laser light, but the laser supplied a clean, stable, intense beam of light 
which could be focused on the photodetector. Localizing the light limited heating of the bed and 
made temperature control within the flow loop unnecessary. The laser was aligned along a diameter 
of the bed. 

A Hewlett-Packard (model 5082-4220 PIN) photodiode was used to detect the transmitted light. 
The photodiode was placed at the back of a 12 mm long black plastic tube of 3 mm i.d. The tube 
was held flush against the side of the bed and aligned opposite the laser, along the same bed 
diameter. The 3 mm aperture kept our ratios of aperture size to particle diameter roughly in line 
with those used in the experiments of E1-Kaissy & Homsy (1976) and Didwania & Homsy (1981). 

2.4. Signal processing 

Processing of the intensity signal from the photodiodes consisted of five parts: (1) amplification; 
(2) filtering; (3) separation of the a.c. and d.c. components; (4) recording of the a.c. and d.c. and 
(5) spectral analysis of the a.c. The amplifier converted the/~A current signal from the photodiode 
to a voltage signal for further processing, and the filter eliminated fluctuations of frequency greater 
than approx. 50 Hz, as the signal of interest was anticipated to be in the 0-10 Hz range. The gain 
on the amplifier could be adjusted from 106 to 108V//~A. Separation of a.c. and d.c. was 
accomplished by extracting the d.c. component from the signal with an active low-pass filter (time 
constant = 20 s), then substracting the d.c. from the total signal to isolate the a.c. The a.c. was 
amplified after separation with an amplifier of 100 V/V gain. 

The d.c. and a.c. signals were recorded on a two-channel Gould Brush 220 strip chart recorder. 
The d.c. signal was also monitored with a Fluke model 8600A digital multimeter. The a.c. signal 
was sent on to a Honeywell/Saicor model SAI-51C real-time spectrum analyzer. The spectra from 
the analyser were viewed on an oscilloscope and plotted for later evaluation on a Hewlett-Packard 
7015B x - y  recorder. 

2.5. Procedure 

The procedure for each particle-fluid set was the same. For most of the experiments, the initial 
packed bed height was approx. 40 cm. Once the entire charge of particles was in the bed, fluid was 
circulated through the bed at a flow rate sufficient to expand the bed to the top of the tube. The 
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bed was operated in this expanded state for more than an hour to release any trapped air bubbles 
and to clear out any small impurities. 

When the start-up procedure was over, the flow rate was lowered until the bed height was approx. 
70 cm. The bed was allowed to come to a steady-state and the electronics were allowed to pass 
through their transients before any measurements were made. Steady-state was verified by 
observation of  a fixed height for the fluidized bed (measured with a cathetometer) and a steady 
d.c. signal from the photodiodes. At steady-state the flow rate through the bed was measured 
gravimetrically and the bed height recorded. The a.c. and d.c. signals were recorded during this 
time, and a spectrum analysis was performed on the a.c. signal. The same measurements were 
repeated at a sequence of  flow rates covering the range between the initial expanded state and a 
completely packed bed. 

The results from a sequence of runs moving down from the expanded state were examined to 
find both the minimum fluidization point and the critical point, followed by another sequence of 
runs. The procedure at each step in the repeat sequence was the same as in the original sequence, 
but the flow rates examined were concentrated around the critical and minimum fluidization points. 
If the threshold did not coincide with minimum fluidization, then the reversibility of the threshold 
was examined by moving back and forth through the critical point to observe any hysteresis. 

The expansion and stability characteristics for each set were determined in the manner described 
above, then the entire procedure was repeated a second time. The results from the first and second 
passes through the experimental program were to be compared to determine the repeatability of 
the threshold measurements. 

3. E X P E R I M E N T A L  RESULTS 

In order to be successful in determining if a state of  stable fluidization exists, it is necessary to 
measure two velocities: that for minimum fluidization and that for onset of  instabilities. The 
minimum fluidizing velocity, Umr, was taken to be the velocity at which a bed first begins to expand, 
and the velocity for onset of  instabilities, uc, was taken to be the velocity for which coherent, 
wave-like fluctuations could be seen, detected and characterized. 

3.1. Experimental evidence of a stable bed 

The expansion characteristics may be described by the Richardson-Zaki relation. Typical 
expansion data are shown in figures 3(a, b) in the base of set C fluidized with water. Figure 3(a) 

o 
> 

.f~ 
1= 
Q. 

0 . 4 0  

J 
0 . 2 0  

0 

1.0 

(a) 

I I ,  I I i I i I i 

0.40 0 .60 

(b) 

id 
0.1 

/ 
! 

0'.5 . . . .  1.0 

/ 

Void Fraction, 

Figure 3. Fluidized bed expansion behavior for particle set C and fluid l (water): (a) expansion data on linear 
coordinates, showing Umr and uc; (b) data on log coordinates showing the fit to the Richardson-Zaki power law. 
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Table 3. Fluidized bed expansion characteristics 

179 

Set Fluid D O/d ut (cm/s) n ~mr Umr(em/s) 

A 1 12 10.05 3.47 0.407 + 0.001 0.4500 + 0.0500 
B I 17 7.55 3.96 0.409 + 0.002 0.2200 + 0.0200 
C I 24 4.97 4.42 0.410 + 0.020 0.0970 + 0.0100 
D I 34 3.21 4.47 0.398 + 0.001 0.0520 + 0.0060 
E I 47 1.66 4.68 0.411 + 0.001 0.0260 + 0.0020 
C 2 24 3.87 4.66 0.407 + 0.001 0.0590 + 0.0060 
C 3 24 2.91 4.82 0.410 __+ 0.001 0.0400 + 0.0040 
C 4 24 1.97 4.85 0.409 -I- 0.010 0.0260 + 0.0030 
C 5 24 1.04 5.16 0.413 + 0.010 0.0109 + 0.0011 
F 1 24 9.22 4.22 0.412 0.192 
G 1 27 0.82 5.28 0.447 0.010 
H I 12 2.81 4.68 0.443 0.053 

shows such data on linear coordinates, while figure 3(b) shows the same data on the more 
conventional logarithmic coordinates. The value of Umf was taken to be the velocity at which the 
bed begins to expand, and was measured by i~lentifying the break in the curves of expansion vs 
velocity. The values measured in this fashion agreed well with those calculated using standard 
correlations. The data include replicate runs, in which it is seen that the expansion characteristics 
are repeatable, and do not exhibit substantial hysteresis. The results of least-squares fits to the 
standard relation, u = utE" are included in figures 3(a, b). From such data, the exponent, n, as well 
as the velocity Umr may be measured, and the results from all the cases studied are given in 
table 3. 

The stability characteristics of the bed were determined by visual observation, examination of 
the strip chart recordings and evaluation of the spectra, with substantial agreement between the 
three. In the initial expanded fully-fluidized state, the particles displayed large-scale motion, the 
a.c. signal was noisy and the spectra had many broad, ill-defined peaks. As the flow rate was 
decreased, the motion became more coherent, finally reaching a state in which planar waves became 
evident. In the planar wave region, the spectra became dominated by a single peak at a frequency, 
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0 

(b) 
UlUmf  = 2.38 - u n s t a b l e  

(c) 
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(d) 
U/Urn f -  1.16 - stable 

Time, t 

Figure 4. Intensity traces during the crossing from an unstable to a stable fluidized bed. 
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Labels refer to corresponding 
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W 

0 10 20 

Frequency (Hz) 

Figure 5. Power spectra crossing from an unstable to a stable fluidized bed. 

f ~< 1.5 Hz. Further decreases in the flow shifted the peak to a lower frequency and diminished the 
amplitude of the fluctuations in a continuous fashion. Finally, at some point, the peak of the spectra 
dropped to below 0.1 Hz and coherent fluctuations of the a.c. signal disappeared. We verified that 
such a condition corresponded to stability by simultaneously monitoring the d.c. component of the 
signal with time, which also showed no fluctuations. This change in behavior was considered to 
represent the crossing of the threshold between an unstable and a stable bed. An example of typical 
traces for set C fluidized by water is presented in figures 4(a--d), with the crossing occurring between 
figures 4(c) and 4(d). The corresponding spectra are given in figure 5. It should be noted that the 
frequency of the wave shifted toward zero while approaching the threshold of the instability. This 
behavior is shown in figure 6, in which the frequency of the coherent wave is plotted against the 
Froude number (or equivalently, fluid velocity). It is seen that the data, when extrapolated to zero 
frequency, show a coincidence between the critical velocity measured as described above, and the 
velocity at which the frequency vanishes. This behavior agrees with the theoretical expectations, 
noted in the introduction, that the first unstable mode is of low frequency. 

Since the wavelength of the instability diverges at the threshold, we were concerned that the finite 
length of the bed would prevent observation of extremely long waves. These are general 
considerations in experimental observations of any convective instability near the threshold, where 
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Figure 6. Frequency vs Fr for set F and fluid 1 (water): ©, 
critical conditions; i'q, minimum fluidization. 
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Figure 7. Dependence of Q on particle Re at critical 
conditions: O, fluidization with water as the working fluid, 
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Table 4. Fluidized bed stability characteristics 

Set Fluid ~c u~(cm/s) 

A 1 0.429 + 0.005 0.5300 + 0.0600 
B 1 0.425 + 0.004 0.2500 ___ 0.0300 
C 1 0 .428+0 .006  0.1170_+0.0140 
D 1 0.410 ___ 0.003 0.0600 -+ 0.0060 
E 1 0.439 + 0.010 0.0350 -+ 0.0050 
C 2 0.424 -+ 0.005 0.0710 ___ 0.0080 
C 3 0.428 _ 0.003 0.0490 ___ 0.0050 
C 4 0.448 + 0.003 0.0400 + 0.0040 
C 5 0.464 _+ 0.008 0.0198 _+ 0.0025 
F 1 0.419 ___ 0.007 0.227 + 0.019 
G 1 0.452 -+ 0.008 0.012 -+ 0.001 
H l 0.462 __+ 0.009 0.075 _+ 0.006 

Table 5. Effective elasticity vs particle Re and density ratio 

Set Fluid Q Re c R Rec/R 
A 1 0.206 3.70 0.413 8.96 

0.215 3.77 9.13 
0.215 3.79 9.17 

B 1 0.117 1.35 0.405 3.33 
0.098 1.20 2.96 

C 1 0.036 0.385 0.402 0.96 
0.039 0.406 1.01 

D I 0.017 0.140 0.405 0.35 
0.196 0.163 0.40 

E 1 0.0057 0.050 0.408 0.12 
0.0068 0.057 0.14 

C 2 0.0181 0.148 0.418 0.35 
C 3 0.0094 0.069 0.433 0.16 
C 4 0.0055 0.035 0.445 0.08 
C 5 0 . 0 0 2  0.0083 0.586 0.01 
F 1 0.0938 0.802 0.242 3.32 
G I 0.0031 0.039 0.839 0.05 
H 1 0.0342 0.565 0.843 0.67 
H 0.0353 0.557 0.66 

growth rates are small, and is particularly important for long-wave instabilities. Accordingly, we 
repeated one of the experiments (set H with water), with a packed bed of only 20 cm in depth, and 
observed the same critical velocity, within the errors of the experiment. 

An example of  the location of  the threshold for the particle set C fluidized with water is depicted 
in figures 3(a, b). The instability points for all other systems were obtained in a similar fashion and 
the measured values of  (u~, E~) are presented in table 4. The location of  the threshold was found 
to be the same when approached from u < uc (expanding bed) as when approached form u > u¢ 
(contracting bed), indicating a non-hysteretic transition between a stable expanded state and the 
wavy state. Many experiments were repeated, with the same results obtained to within the errors, 
as indicated in tables 3 and 4. 

3.2. Estimation of  the effective elasticity 

These studies prove conclusively that, with sufficiently small particles, it is possible to obtain a 
uniformly expanded, stable fluidized bed. The only available theory with which to interpret such 
observations is one based upon an effective elasticity as the mechanism of  stabilization, as described 
in the introduction and in the appendix. The dimensionless stability parameter in this theory is the 
dimensionless quantity Q. Experimental values for Q were calculated using the working equation, 
[A.7] in the appendix, where all the quantities on the r.h.s, of  that equation are measured. It is 
important to emphasize that the specific values of  Q depend upon specific relations for the drag 
curve, virtual mass expressions, mobility etc., that are adopted in the theory. In this sense, we 
consider the stability data in table 4 to be the important primitive results of  the experiments, and 
the computer values of Q to be derived quantities. Improved theoretical expressions for the 
coefficients in [11] may allow improved estimates of  Q. As we will see, important inferences about 
the physical mechanisms may be made by examining the dependence of  Q on the parameters 
describing the fluid-particle mixture. 

4. DISCUSSION AND C O N C L U S I O N S  

4. !. Variation with particle size and fluid viscosity 

We first discuss the results for the first two series of  experiments in which both particle size and 
fluid viscosity were varied. The calculated values of Q are plotted as a function of  the particle 
Reynolds number at critical conditions, Rec, in figure 7. A number of  points may be made regarding 
these results. The first is that the effective dispersion coefficient scales uniquely with Reynolds 
number for these two series of data. Recall that for the data in figure 7, particle size, fluid velocity 
and fluid properties were all varied independently. Second, the most surprising aspect of  these data 
is the strong dependence on Re, even for the relatively small Re values involved. The best fit curve 
through the data indicates that Q ~ (Rec) °79. Figure 8(a) presents the same data on linear 
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Figure 8. Dependence of Q on particle Re at critical conditions. The solid curve is the best quadratic fit 
through the data: (a) all data; (b) data for small Re. 

coordinates, with a best fit curve indicating that 

Q -- 2.3 × 10 -3 + 9.6 x 10 -2 Re~ - 1 x 10-2(Rec) 2. 

Higher order polynomial fits to the data resulted in poorer fits. The strong Re dependence is 
reflected in the small intercept and the fact that the data are very nearly linear in Rec for small 
Re~, as shown in figure 8(b). 

4.2. Variation with particle density 

A third series of experiments in which the particle density was varied leads to important insight 
as to the mechanism of stabilization. In figure 9, we show values of Q for the three data in this 
series compared with the general behavior from the first two series. We notice that the datum for 
the high density particles lies above the best-fit line corresponding to the previous results, while 
the data for the low density particles falls below. This indicates that the effective elasticity depends 
not only upon Re, but, as expected from general dimensional analysis, on the ratio R of particle 
to fluid density. Moreover, the variation, at least over this range of R, is systematic. This suggested 
that we attempt to find a universal scaling of Q with a combination of Rec and R, the simplest 
being Rec/R. The corresponding plot of Q vs Rec/R is shown in figure 10. It is seen that all the 
data scale well with this combination of variables, with the best fit, 
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Figure 9. Dependence of Q on particle Re; effect of varying 
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with water; the solid line is the best fit of  the data for the 
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Our experimental observations are in qualitative agreement with the prediction from linear 
stability theory that a bulk elasticity can stabilize beds of small particles. We have found that there 
is a gap between minimum fluidization and the onset of the wavy instability where a stable fluidized 
state can be obtained. Stable fluidization is a robust phenomenon, with the location of the threshold 
between the stable and unstable states exhibiting good repeatability and no hysteresis. We have 
observed that the frequency of the waves decreased to zero when approaching the threshold by 
decreasing the flow rate. This is in agreement with the fact that the stability criterion [3] guarantees 
stability to disturbances of all wavelengths. 

Interpreting these results in terms of available theory, we have deduced the stability parameter, 
a dimensionless effective elasticity, {2. We find that Q is not independent of the diameter of the 
particle or of the viscosity of the fluid. As discussed in the introduction, Q is considered to be made 
up of two parts, one coming from a Reynolds stress due to particle velocity fluctuations and the 
other due to hydrodynamic dispersion down a concentration gradient. While the statement made 
by Batchelor that the one-dimensional theory presented does not contain parameters that cannot 
be measured independently is correct, those measurements do not presently exist for the particle 
concentrations of interest in fluidization. Thus, in order to pursue the theoretical calculation he 
is forced to make assumptions, namely that the diffusivity defined in [9] is O(1), as suggested by 
sedimentation experiments, and that momentum transfer by fluctuations in particle concentration 
is negligible. Neither of these assumptions can be justified a priori, in spite of the arguments he 
gives. Our results can be interpreted as implying that the opposite is true; our experiments were 
done in a range of particle Re for which the scaling for the gradient diffusivity in [9] is expected 
to be valid. Thus, if the elasticity due to dispersion dominated, the inferred values of Q in these 
scalings would be expected to be constant with particle Re over some range. The results in figures 
8(a, b) therefore may be interpreted as implying that the small constant term in the deduced 
expression is due to a very small gradient diffusivity at these high volume concentrations, and that 
the origin of the elasticity is inertial in nature. Moreover, the dependence of Q on R, i.e. the particle 
density is what matters, shows that the physical mechanism is most likely due to the Reynolds stress 
due to particle velocity fluctuations. 
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A P P E N D I X  

We exhibit the working formula used to reduce the measured stability limits to values of the 
effective diffusivity. We begin with [6] of the main text: 

Z = Ko + 7o(1 - R)/5o [A. 1] 
u 2 Fro 

In this formula 

where H(E)u~ is the proposed form for (V 2) in a homogeneous bed, 

Pf 
R ~ - - -  

Ps 

is the ratio of the density, 

is the drag slope parameter, 

is the Froude number and 

= F.L . . . .  t 

Fro = g-~ 

150 D 
duo 

[A.2] 

[A.3] 

[A.4] 

[A.5] 

[A.6] 
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where D is the hydrodynamic (gradient) diffusivity of the particles. Using these definitions, we can 
rewrite [11] as 

F r o ( l -  Eo)2r/2 I 3R(n - 1)] [A.7] 
Q >  (1-R)?0E02 ( I - R ) - 4  2ne0 " 

Here n is the Richardson-Zaki exponent (Richardson & Zaki 1954) and A, B and C have been 
replaced by the forms proposed by Batchelor, where, in his notation, 

and 

0 = Rc(e),  [A.8I 

dc 
= - R ( 1  - 0 - 7 -  [A.91 

GE 

3 - 2E 
c(E) = - -  [A.10] 

2e 

Values for ~ can be obtained from the definition of ? given after [B.4] in Batchelor (1988) and 
the formula Fh taken from Batchelor (1988) and presented here as [A.121. The resulting formula 
for 7 is given in [A. 13], which shows the dependence of ? on the drag coefficient CD. In general, 
CD will depend upon E, R, the particle configuration and the particle Re: 

vdpr 
Re = - - ,  [A. 11] 

# 

Fh = -- ~a2pfv  2C D [A. 12] 

and 

v dCo 
? = 2 + C---~ 3---~-" [A.13] 

For the purposes of this study, we will follow Batchelor, who considers V to be relatively 
insensitive to E and therefore takes CD = Coo, where Coo is the drag coefficient for an isolated rigid 
sphere. In particular, we will use the correlation for Coo from Foscolo & Gibilaro (1984), which 
is used by Batchelor for 0 < Re < 2000, i.e. 

4.90 \2 
Coo= 0.63 + ~ ) .  [A.14] 

The working formula for ~, is given in [A. 15], from which it can be seen that the value for ~ has 
a relatively small influence on Q, varying from 1 when Re ,~ 1 to 2 when Re >> 1: 

= 1 -4 0"63x /~  
4.90 + 0 .63v /~"  [A. 153 

Equation [A.7] can be used to determine the magnitude of Q required to stabilize a given bed 
at minimum fluidization or to determine the actual value of/50 for a given system. 


